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Abstract
Ray nacing is a well known technique for generating realistic images. One of the major

drawbacks of this approach are the extensive computational requirements for image calculation.
When generating animation sequences frame by frame the computational cost might easily
become intolerable. In the last years several methods have been devised for accelerating the
computational speed by using spatial and temporal coherence. While these techniques work
only under certain restrictions, a new approach is presented in this paper which leads to a
considerable speed-up of the calculation process without putting any limitations on camera or
object movement. In principle, the method is an extension of /ArKi87/, where rays are
considered points in 5D space, by the time dimension. CSG is used for object description and
has been modified correspondingly to allow easy use of coherence properties. The paper
describes the theoretical baökground-and the main cöncepts of a practical irnplementation. 
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1. Introduction

Ray tracing is a technique where the color information for every pixel is calculated by casting
rays through object space. Ray - object intersections are computationally by far the most
expensive part in the image generation process and should be reduced or simplified as far as
possible. Soon after ray tracing was introduced, spatial coherence properties were used to
accelerate image calculation. The use of simple bounding volumes (boxes, spheres, plane sets,
...) led to a considerable acceleration of the ray nacing method SuMivision methods turned out
to be another very powerful optimization tool. lFuTaS6/ and /Glas84/ examine object space
suMivisions. /FuTa86/ describe a regular voxel subdivision while /Glas84/ uses an ocree data
structure for organizing the object space suMivision. In /Gerv86/ an image space subdivision
method is presented and /ArKi87 inroduce ray space subdivision. Temporal coherence denotes
similarities between consecutive frames of animation sequences. Most of the techniques that
take advantage of temporal coherence properties work only under some restrictions. In
Alubs8lÄ one of the earliest works dealing with temporal coher€nce, a method is presented that
works just for convex polyhedra. In /I{ube88/ and MuHi9O/ methods are examined that work
only for a fixed camera position. Some other methods are making a trade-off between
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calculation speed and image quality (/Badt88/). Our goal was to develop a fast and general
method (no restrictions on camera and object movement) for the calculation of animation
sequences without loss of image quality.

2. Coherence in ray space

Starting out from the ideas presented in/ArKi87/ a new approach using spatial as well as
tempolal coherence is developed. Every ray that is generated duri-ng the. calculation of an
animation sequence is considered to be a point in an appropriate 6 dimensional ray space. In
this space a ray is defined by its origin (3 coordinates), its direction (2 coordinates) and its time
of generation (1 coordinate). The organization ofray space has to be done in such a way, that
certain requirements are fulfilled. Rays close together in ray space (similar origin, direction and
time of generation) should traverse similar regions of object space, so that coherence properties
can be transfered from ray space to object space. In order to avoid as many as possible time
consuming ray - object intersections the concept of the 6D ray space is used to eliminate
intersection tests for groups of coherent rays, thereby distributing the cost of this eliminiation
step over a number of different rays. The algorithm proceeds as follows: A 6D bounding
volume B (a subset of ray space) is calculate4 which contains every ray that might be generated
during the calculation of the animation sequence. This bounding volume is then partitioned
hierarchically into disjoint volumes or ray sets Bi. For every ray set Bi a so called candidate set
Ci is calculatd which contains only that small number of objects of the whole object scene that
might be intersected by rays of Bi.

Ray - object intersection is done in 2 steps:

1. finding a ray set Bi that encloses the ray considered (ray classifrcation)
2. ray intersection by using the small number of objects of the candidate set Ci

To ensure fast execution of step 1 the bounding volume B is partitioned into geometrically
simple ray sets Bi (hypercubes). Every ray set Bi is associated with a region in 3D object space
(a so called "beam"), namely with the set consisting of those points that could be reached by a
ray of Bi. For a given ray set Bi only those objects that lie at least partiafly inside the associated
3D beam are relevant for intersection tests. Candidate sets arc therefore created by intersecting
the whole object scene with these beams. This can be done effrciently, when the beams
themselves have a simple geometrical shape (e.g. convex polyhedra). The 6D ray space has to
be organized so that a simple ray set Bi (hypercube) has a simple beam in 3D object space.
Partitioning of the ray space is done "on the fly", candidate sets are created only when needed.
Small ray sets (high spatial and temporal coherence) guarantee small candidate sets, but the cost
of creating these sets is amortized only among a limited number of rays. So partitioning of a
part of ray space is stopped either when the candidate set is small enough or the ray set has
minimal size. An optimal trade-off between these two constraints (sizes of ray set and candidate
set) can be found through experimental results.

3. 6D ray space

A ray is defrned as a point in 6D space:

ray r = (x, y, z, u, v, t)
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A ray set B1 is defined as a hypercube

Bi = [x 1,x2] x[y y,y 2]xlz y,z2l x [u 1,u2] x [v l,v 2]xlt l,t2l

which consists of all those rays whose coordinates as 6D points lie in the 6 specified intervals.
Using spherical angles (longitude, latitude) for determining the ray direction would have the
undesirable consequence üa1 a simFle ray set Bi has a beam with a non polygonal boundary.
By using a so called direction cube, rays can be defined so that the 3D beams associated with
6D hypercubes are convex polyhedra.

Figure l: direction cube

All rays with the same origin are partitioned into 6 disjoint sets depending on the intersection of
the ray direction with an axis aligned cube with sides of length 2 positioned at the ray origin. A
ray direction is then specified by a "dominant axis" (corresponding to the intersected face of the
cube) and the two intersection values u, v, - I ( u,v < 1 (see Figure l). Ray space is therefore
represented by six hypercubes, one hypercube for each dominant axis:

ray space R3x([-1, l]x[-1,1],+X)xT u
R3x(t- 1, l lxt-1,11,-X)xT rr
R3x(t-1, llxt- 1, ll,+Y)xT r.,

R3x(t- I, l lxt-1, 11,-Y)xT r:
R3x([- 1, 1]x[- l, l l ,+Z)xT v
R3x(t- 1, 1 lxt- 1,lf ,-Z)xT

dominantaxis +X
ray direction (u,vjX)
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with
([-l,l]x[-l,l],+X) . . . . . setofallraydirectionswithdominantaxis+X
T.. . .  .  t imeinterval

The six disjoint parts of ray space are stored in 6 distinct hierarchical data structures, one for
every dominant axis. Whenever a ray is classified the relevant data structure is found by
calculating the dominant axis of the ray in question.

4. Data structures for ray space

The ray qpace information is administercd in 6 hypercube trees (Figure 2). Any hypercube
node has up to 64 children generated by splitting each of the 6 defining intervals of the
hypercube in the middle. A candidate set is associated with every hypercube node. The
candidate set of the root node is the whole object scene. Any ray inside a given hypercube can
only intersect objects of the candidate set. Adequate data structures for candidate set
representation will be discussed in a following section. Ray classification is done by recursive
traversal of the hypercube structure. A hypercube node is considered to be a leaf node (no
further partioning done) if the hypercube is below a certain minimal size or the candidate set
contains only few objeas. Surting from the root of the hypercube Eee, a path to a leaf node has
to be found. At an intemrediate node the child node, whose hypercube encloses the ray, is
selected for further traversal. If this child node does not exist (no ray has been classified to lie
in this part ofray space so far) the hypercube data structure is extended accordingly. Precise
algorithms will be given later on.

E. Gröller and W. Purgathoter

E 
intermediatenode

E 
harnode

Figure 2: hypercube ree

When the relevant leaf node has been found, the ray - object intersection is done using the
(hopefully) small candidate sel
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5. Data structure for candidate sets

The object scene as well as the candidate sets are stored as CSG data. An object
representation is defined as a binary tree where the leaf nodes correspond to geometrical
primitives (cube, sphere, cylinder, cone, ...) whereas in the intermediate nodes sei operations
(union, intersection, difference) define how the objects represented by the two child nodes are
combined. Storage efficient description of a moving object leads to an extension of the CSG
model, so that the positions of an object over a period of time can be specified in a short and
concise way @gure 3).
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Figure 3: extended CSG tree

For every leaf node a list of transfomration matrices T1 is kept, where Ti describes the position
of the object at time i. When calculating frame i, matrices T1 are used to deterrnine the position
of an objecr In this data structue the object positions are stored for those specific discrete time
instants the frames are calculated for. In some cases, e.g. no motion or uniform motion, more
storage efficient data structures than lists are advisable. Storing all possible positions in one
data structure allows the processing of the object not only for specific instanis but for whole
time intervals thereby making use of temporal coherence properties. Candidate sets are stored as
extended CSG trees. When generating a candidate set only new intermediate nodes have to be
created. Existing leaf nodes of the CSG tree can be reused by pointer reference. As leaf nodes
qsqally lequire most of the storage space of a CSG tree, redundant storage of these nodes must
definitely be avoided. One of the earliest optimization efforts concerning CSG dealt with
bounding boxes and bounding spheres /Roth82/. For every node of a CSG tree bounding
boxes can be calculated that enclose the represented object. Intersection tests are done with thä
simple bounding. box first. Only if the bounding box is hit by the ray a much more time
intensive ray - object intersection test has to be performed. How Can this very useful method be
incorp_orated into the concept of extended CSG rees? A straightforward approach of storing
lists ofboundingboxes, one bounding box for every time step i, in the interrnediate nodes ai
well as in the leafnodes would greatly increase the needed störage space. In our approach we
use so called time boxes, an extension of bounding boxes by a temporal coordinate. Ä time box
S[ij] encloses ttre object during the time interval [ij] (see Figure d time spheres could be used
as well) .  Start ing from bounding boxes Ui, Ui+I,. . . ,  U; for t imä steps i ,  i+1, . . . ,  j
rjrspectively, Stiil can be calculated easily. ff the object is not nioving during the interval [ij],
S[ij] simply reduces to the usual bounding box. These time boxes are stored in the extendäd
csG ree (Figure 5) in the following way: For every leaf node a binary tree of time boxes S[ij]
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bounding volumes:
U2

E
fnme2

Figure 4: bounding volumes and time box

is calculated. The root of this binary tree represents S[,n], the bounding volume that encloses
the primitive element over the interva tl,nl. The leaf nodes are the simple bounding boxes Ul,
...,Ün which are combined in a binary way to generate the bounding tree.

U1

E
frame I

@ csc
@ csc

F---T;lilr--1

Figure 5:

object

intermediate node x

leafnode x

time box Slijl of node x fq the time interval [ij]

object description for time interval [ij] as an extended CSG tres
(matices Ti not shown), time boxes S[ij]
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As the leaf nodes of the candidate sets are stored only.once, the entire bounding trees are kept.If an extended csG tree represents an object for-the 
'tir" 

pärioa ti,jt oJii*""ti-" boxes (ile.
fl1{i-.r4?1,^ll\i*:>t?,il> are stored at iitermediate nodäs. whäf,'tr," iyf".cuu" node, iheextencled cso tree is associated with, has to be split, one of these two tinie boxes is used to
ge11e91e the candidate set for the child hypercube which is defined io;ii;; intervat ilttrei
ti,(i+j)2] or [(r+j)12+ I j].

6. Algorithms

,^ l1,i.f:flT::rlig rL.p, u 6D bourlding volume is determined. enclosing all rays that mightDe relevant dunng tne calculation of the animation sequence. Taking a box enölosure of-all
P:j:tb_t^.:pg|q 

(origins of primary rays),.and the timetox S{l,nl oif the entire object scene
LTgt:: ^":^t::",i1*?_Iyr) gives a good estimation of.all possible ray origins. Due to gtoballlgnung enects (retlectron, ransparency) no _useful restrictions_on ray directi-ons seem apparent,all directions are consideredpossible (ü, v el-1,+11 for every dominänt a*isl. itte time intervalis set to [1,n] if n frames shall be cSlcurated. uilnc tttir inrormation thä;il;;i'hr*..ubes aregeneratgd. The candidate sets for these root nodeJ are extended CSG trees of the ivhote oUSict
TfI:1":^"J:?111_1J.y 

- object intersection is done in trc roiowi;c-*. steps (hq is arererence to the hypercube structure):

step 1:
candidate_set := ray_classification(r, hq)

ray_rlassification (r:ray; hq:hlpercube_structure): CSG tree
begrn

determine the dominant axis of ray r

traversal of the hypercube structure to frnd the smallest
existing hypercube node hn that contains r

iftype ofhn = leafnode
ü€

(* classification completed *)
retum (candidate set ofhn)

elss
(* hn has to be split *)

- retum(generate_new_path(r,hn))
crd

g€nerate_new_path (r:ray; hn:hypercube_node): CSG tree
(+ retums the candidate set of a newly generated hypercube leaf node *)
begtn

ray r d-etermines which of the 64 possible children hn_child
ofhn has to be generated

calculation of the candidate set of hn_child

i{hn_child or associated candidate set is small enough
then

type of hn_child := leaf node

1 0 9
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retum (candidate set ofhn_child)
else

(* further splitting necessary *)

type of hn-node := intermediate node
return (generate-new-path(r, hn-child)

eld

The calculation of the candidate set is done by intersecting the 3D beam of the child node
hn_child with the candidate set of the parent hypercube node. For fast beam-object intersection
the beam as well as the object are approximated by simple, easy to intersect, enclosing
volumes. Intersection of the approximating volumes (instead of beam - object intersection) will
result in slightly larger candidate sets. Depending on the different approximation volumes for
beam and object there are different possibilities for this intersection step:

method a: 3D beam: approximated by simple axis aligned planes
object: approximated by bounding boxes

method b: 3D bearn: approximated by simple axis aligned planes
objecl approximated by bounding spheres

method c: 3D beam: approximated by a cone
object approximated by bounding spheres

In method c the cone - sphere intenection can be calculated easily. A cone however is not as
good as axis aligned planes for approximating the 3D beam. So with method c the candidate
sets are calculated faster, but are usually larger than with method a or b. For further details see
lArKj97l.

step 2:
intersection_ray_object (r, candidate_set)
(* usual intersection of a ray with a CSG tree by recursive traversal *)

7. Extensions and modifications

Sometimes ray origins of primary rays lie far outside the bounding volume of the object
scene. This leads to an unnecessarily large (and to a great extent empty) 6D bounding volume
of the six roots (one for every dominant axis) of the hypercube structure. To ensure a more
balanced partitioning ofray space only the 3D object bounding volume is used for the definition
of the 6D bounding volume. Ray origins of primary rays outside the 3D object bounding
volume are not considered. Ray classification has to be modified slightly for these rays.
Because such a ray, as a 6D point, does not lie inside the 6D bounding volume the intersection
point of the ray with the 3D object bounding volume is taken as the new ray origin. Ray
classification is done with this modified ray as usual.

Adjacent primary rays are close together in ray space. First a quick test is done whether a ray
lies inside the hypercube node found for the previous primary ray. This very often eliminates
the need to traverse the hypercube strucftre.

Generally rays are calculated in temporal order. So parts of the hypercube structure that
correspond to already processed time intervals are not needed anymore, valuable memory space
can be reused.
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No ray intersection test is done with candidate sets of intermediate hypercube nodes (Figure
2). Omining ttrese candidate sets leads to a considerable reduction in storage requirements. The
candidate set of the root node is kept however. Whenever node splitting is performed, the
candidate set for the new node is generated by intersecting the candidate set of the root with the
3D beam of the new hypercube. If it turns out during candidate set generation that the new
candidate set is still too large and hence further splitting is necessary (the new hypercube node
becoming an intermediate node as well) the candidate set need not be generated completely as it
is not stored at the intermediate node anyway. Candidate set creation will, however, take longer
as the whole scene is always taken as the starting point If on the other hand candidate sets a.re
stored in intermediate nodes, the generating step can start out from the (small) candidate set of
the node to be split, at the expense of greater storage requiremens.

8. Implementation and results

A test system was implemented /Reic9O/ in Pascal on a VAX-cluster (5 VAX-Stations 2000,
I VAX-Station 3200 with 3MB and 4MB user accessible memory respectively) using
components of RISS (Realistic Image Synthesis System), a software package for the generation
ofrealistic images developed at our deparnnent /GePu88/. Storage restrictions allowed only the
processing of simple scenes. Experimental results show that even for simple scenes (=30
objects, 10 frames, 20Ox200 resolution, maximal height of hypercube tree 4) a speed-up factor
of about 2 canbe obtained (see example pictures). For a finer partitioning ofray space (higher
hypercube structure, smaller candidate sets) higher speed-up rates can be expected.

For a theoretical complexity analysis certain assumptions on the statistical distribution of the
objects in the scene as well as of rays in 6D ray space would have to be made. The distribution
of rays in 6D ray space, however, greatly depends on the varying camera and object
movements in different animation sequences. So a general theoretical complexity analysis was
not done.

The method presented uses temporal coherence properties without putting any restrictions on
either camera or object movement. Images tue generated with the same quality as a frame by
frame approach would yield-

Example 1:*

object scene: 50 spheres with different surface properties
2 spheres moving

one light source, position of camera moving, l0 frames, adaptive oversampling
Resolution: 2O0x2N
total number of rays: 2 672939
primaryrays: I102900
speed-up:.45 Vo

Size of hypercube structure
method

(depending on beam - object intersection method used):
# of hypercube nodes
t9 331
l8 104
27 440

* See page 528for Figure 6: Example 1 (frames I - 10)

a:
b:
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average size ofcandidate set (max = 10):
method

a:
b:
c:

# of CSG nodes
7.25
7.22
8.55

primary ray is in the same hypercube as previous primary ray:
method # of ravs

ai
b:
c:

90s 830 (82.13%)
90676r (82.22%)
890 488 (8O.74Vo)

Exanrple 2:*

object scene: 23 elementary objects
camera and blue plate moving, 10 frames, adaptive oversampling
Resolution: zffixzffi
total number of rays: 1 L54 441
primary rays: 564 515
sped-up:,37 Vo

Size ofhypercube structure (depending on beam - object intersection method used):
method # ofhypercube nodes

a: 3634
b: 3979
c: 3446

average size of candidate set (max = 10):
method # of CSG nodes

a: 5.31
b: 5.45
c: 5.79

primary ray is in the same hypercube as previous primary ray:
method # of rays

a: 296 695 (52.5680)
b: 294916 (52.24Vo)
c: 294 894 (52.24Vo)
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Figure 7: Example 2
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